Welcome OT students

Introduction to Library Resources

Susan K. Jacobs/Health Sciences Librarian
susan.jacobs@nyu.edu

Brynne Campbell/Health Sciences Reference Associate
bc2348@nyu.edu

James Malin/Science Reference Associate
ejm760@nyu.edu

Elmer Holmes Bobst Library
70 Washington Square South
HELP: http://library.nyu.edu/ask
Q: Where do I start?

http://guides.nyu.edu/ot
Embedded link in NYU classes

This course introduces the newly accepted profession of Education and to NYU. It is intended to help the students understand professional education, as well as introduce basic concepts.
Grad study space:
Floors 5, 6, and Lower Level 1)
Individual Study Rooms
(throughout Bobst)

Reserve a room:
http://guides.nyu.edu/spaces

Find books in Bobcat:
http://bobcat.library.nyu.edu
Students may have up to 200 items checked out at one time! Standard loan period 120 days for Master’s and PhD students.
(Subject to recall after 2 weeks).
Books and E-Books (background information)

- disease overviews
- intervention summaries
- reference; encyclopedias
- anatomy/physiology
- evidence summaries
- evidence syntheses
- "point of care" tools
A Bobcat search (library catalog)

A print book: call number located on the 9th floor
An e-book (nyu.edu only)
The encyclopedia of elder care : the comprehensive resource on geriatric health and social care

Elizabeth A. Capezuti, PhD, RN, FAAN • 2013

Publisher: Springer Publishing Company
ISBN: 9780826137364

Online Access

Credo Reference
NYU access only

Copies in Library
Not Available

Request a copy from E-ZBorrow
Get item from one of our partner libraries in 3-6 days. Checkout period is 12 weeks, with no renewals.

Check E-ZBorrow

Unable to automatically determine E-ZBorrow availability for this edition. Please check E-ZBorrow for this item.

Search inside this book via Google Books

Limited Excerpts
A limited preview which may include table of contents, index, and other selected pages.

Google Books

Questions
Ask a Librarian

Send/Share
Email

See also
Compare online prices from AllBookstores.com
The library licenses “e-book collections.”

STAT!Ref is one example of an aggregated collection, good for background information... drugs, disease, patient level info, more.
Article Databases “foreground” information is usually located in individual article studies. (More specific and more recent than book or e-book information.)
Specialized article databases e.g. PubMed, PsycINFO, CINAHL, and more are searchable by topic. They index articles from thousands of scholarly journals. (nyu.edu only)

Direct link: http://guides.nyu.edu/databasesOT
• **Medline/PubMed:** the premier biomedical database; 1950 to present with some older refs; more than 27 million records

• **Web of Science** (*Social Science Citation Index, Science Citation Index, Arts and Humanities Citation Index*)

• **CINAHLPlus** (*Cumulative Index to Nursing and Allied Health Literature*); indexes nursing and allied health literature for more than 3200 journals back to 1937.

• **PsycINFO:** International coverage of the professional and academic literature in psychology, medicine, psychiatry, nursing, sociology, education, pharmacology, physiology, linguistics, and other areas.

• **Proquest Central** multidisciplinary resource for research on contemporary topics or for the beginning stages of a research project. Includes Newspapers, *NYT/WSJ* and more.

• For many OT questions, search both **CINAHL** and **Pubmed/Medline**.

• For questions with behavioral/psychosocial aspects, also search **PsycINFO, Web of Science**

• To locate recent newspapers, popular magazines (nonscholarly, not peer-reviewed) as well as interdisciplinary and scholarly research, consider **Proquest Central**.

• **Consult a librarian about your topic!**
Citation to recent NYTimes article in Proquest Central. Nonscholarly, newspaper article. But it is recent, and may sometimes cite a recent scholarly study! (Follow link to Full Text)
A popular newspaper article (like this one in 2017 June NYTimes) points to a scholarly study...
Health Effects of Overweight and Obesity in 195 Countries over 25 Years.

Abstract

BACKGROUND: Although the rising pandemic of obesity has received much attention, trends and the disease burden of obesity remain uncertain.

METHODS: We analyzed data from 68.5 million persons to assess the trends in obesity among children and adults between 1980 and 2015. Using the Global Burden of Disease study, we calculated the prevalence of obesity related to high body mass index (BMI), according to age, sex, cause, and BMI level.

RESULTS: In 2015, a total of 107.7 million children and 603.7 million adults were estimated to be overweight or obese in more than 70 countries and has continuously increased in most other countries. For children, the rate of increase in childhood obesity has been lower than that among adults, the rate of increase in childhood obesity is 21% per year in 2015. By 2015, 2.1 million children was due to cardiovascular disease. The rate of increase in adult obesity has been attenuated owing to decreasing trends.

CONCLUSIONS: The rapid increase in the prevalence and disease burden of elevated BMI has far surpassed the surveillance of BMI and identification, implementation, and evaluation of evidence-based interventions to address this problem. (Funded by the Bill and Melinda Gates Foundation.)

Comment in

Health Effects

Abstract

BACKGROUND: Although the rising trends and the disease burden of obesity have been studied extensively, the magnitude and importance of effects of this epidemic of obesity have received major attention in many regions and for many diseases.

METHODS: We analyzed data from 68 studies and adults between 1980 and 2015. Using data on BMI, related to high body-mass index (BMI), we estimated the global, regional, national, and age-sex-specific burden of disease from overweight and obesity.

RESULTS: In 2015, a total of 107.7 million children and adults had overweight and obesity. The prevalence of overweight and obesity was highest in the Western Pacific region (24.3%) and lowest in South-east Asia (9.8%). At the national level, the rate of overweight and obesity increased by 1.25% per year in both children and adults between 1980 and 2015. High BMI accounted for 4.0 million deaths in 2015, up from 2.5 million deaths in 1990; however, the rate of this increase has been slower than the rate of increase in obesity.

CONCLUSIONS: The rapid increase in the prevalence of overweight and obesity in children has doubled in more than 70 countries and has continued to increase. High BMI has increased by 1.25% per year among adults, the rate of increase of overweight and obesity among children has increased by 1.25% per year between 1980 and 2015. The role of obesity in the prevention and treatment of cardiovascular disease has been well documented. However, obesity is a major risk factor for many other chronic diseases, including type 2 diabetes, liver disease, and some cancers.

Comment in

Sample Research Question:
Is there evidence that the use of a mobile phone while driving increases the incidence of accidents?

Recommended databases:
- [] CINAHLPlus
- [x] Medline (PubMed or Ovid)
- [] PsycINFO
- [] Cochrane Database of Systematic Reviews
- [] JBI (Joanna Briggs Institute) EBP Database
- [] Scopus
- [] Web of Science
- [] Embase
- [] Proquest Central
- [] Dissertation Abstracts
- [] Other _______________________________
Sample Research Question:
Is there evidence that the use of a mobile phone while driving increases the incidence of accidents?
SIMPLE KEYWORD SEARCH

<table>
<thead>
<tr>
<th>Concept 1</th>
<th>Concept 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driving</td>
<td>Mobile phone</td>
</tr>
</tbody>
</table>

AND retrieves article citations with *BOTH* terms present.
A larger OR’d set of MeSH/keywords/synonyms may be recombined with AND to narrow a search. (MeSH metadata is standard vocabulary)
OBJECTIVE: Distracted driving is a known contributor to traffic accidents, and many states have banned texting and eating while driving. However, little is known about the potential accident risk of other common activities while driving. The objective of the current study was to examine the adverse impact of eating/drinking behaviors on simulated driving performance relative to texting and non-distracted behaviors.

METHODS: A total of 186 participants were recruited from undergraduate psychology courses over 2 semesters. Driving simulation sessions were conducted in a driving simulator at Kent State University (K-MADS) to examine whether eating/drinking behaviors would affect driving performance relative to texting and non-distracted conditions. The eating/drinking group was randomly assigned to texting (N = 45), eating (N = 45), and a control condition (N = 46). In addition, the texting group had more experienced drivers than the eating/drinking group; the eating/drinking group missed more stop signs, and the eating group missed more stop signs than the texting group. These findings generalize to real-world driving conditions and eating/drinking behaviors while driving.
Both texting and eating are associated with impaired simulated driving performance.

Alosco ML, Spitznagel MB, Fischer KH, Miller LA, Pillai V, Hughes J, Gunstad J.

Abstract

OBJECTIVE: Distracted driving is a known contributor to traffic accidents, and many states have banned texting while driving. However, little is known about the potential accident risk of other common activities while driving, such as eating. The objective of the current study was to examine the adverse impact of eating/drinking behavior relative to texting and nondistracted behaviors on a simulated driving task.

METHODS: A total of 186 participants were recruited from undergraduate psychology courses over 2 semesters at Kent State University. We utilized the Kent Multidimensional Assessment Driving Simulation (K-MADS) to compare simulated driving performance among participants randomly assigned to texting (N = 45), eating (N = 45), and control (N = 96) conditions. Multivariate analyses of variance (MANOVA) were conducted to examine between-group differences.

RESULTS: Participants who texted and ate exhibited significantly impaired driving performance, F(14, 366) = 7.70, compared to controls, though these differences were not significant for texting and eating groups. In addition, the texting group had more collisions, and eating group missed more road edges. These findings generalize to the wider population.

CONCLUSION: Texting and eating are associated with impaired driving performance. Further research is needed to understand the specific mechanisms and develop effective interventions.

Notice metadata! The terms that describe a study provide “breadcrumbs” to similar studies...

(like Amazon and Netflix)
Both texting and eating are associated with impaired simulated driving performance.

Alosco ML, Spitznagel MB, Fischer KH, Miller LA, Pillai V, Hughes J, Gunstad J

Abstract

OBJECTIVE: Distracted driving is a known contributor to traffic accidents, and many states have banned texting while driving. However, little is known about the potential accident risk of other common activities while driving, such as eating. The objective of the current study was to examine the adverse impact of eating/drinking behavior relative to texting and nondistracted behaviors on a simulated driving task.

METHODS: A total of 186 participants were recruited from undergraduate psychology courses over 2 semesters at Kent State University. We utilized the Kent Multidimensional Assessment Driving Simulation (K-MADS) to compare simulated driving performance among participants randomly assigned to texting (N = 45), eating (N = 45), and control (N = 96) conditions. Multivariate analyses of variance (MANOVA) were conducted to examine between-group differences on simulated driving indices.

RESULTS: MANOVA analyses indicated that groups differed in simulated driving performance, F(14, 366) = 7.70, P < .001. Both texting and eating produced impaired driving performance relative to controls, though these behaviors had approximately equal effect. Specifically, both texting and eating groups had more collisions, pedestrian strikes, and center line crossings than controls. In addition, the texting group had more road edge excursions than either eating or control participants and the eating group missed more stop signs than controls.

CONCLUSIONS: These findings suggest that both texting and eating are associated with poorer simulated driving performance. Future work is needed to determine whether these findings generalize to real-world driving.

Both texting and eating are associated with impaired simulated driving performance.

Source:

Both Texting and Eating Are Associated With Impaired Simulated Driving Performance

Michael L. Alosco, Mary Beth Spernath, Kimberly Hall, Pinder, Lindsey A. Miller, Vicky Pulakos, Joel A. Gruber, and John Cunstella

ABSTRACT

The current study examined the potential impact of texting and eating on driving performance. Participants were assigned to one of two conditions: texting, eating, or neither. The texting group was instructed to text messages every 150 seconds while driving a simulated vehicle. The eating group was instructed to eat a standardized meal while driving the same vehicle. The control group was instructed to drive without any additional distractions. In all three groups, participants were asked to complete the same driving tasks, including lane position, speed, and avoidance maneuvers. The results indicated that texting and eating both impaired driving performance, with texting having a greater impact than eating. The texting group had more lane departures, higher speeds, and a greater number of crashes compared to the control group. The eating group also had more lane departures and higher speeds compared to the control group, but the difference was not as significant as the texting group.

Keywords: Driving simulator, texting, eating, driving performance, road safety

INTRODUCTION

An estimated 40,000 people were killed in motor vehicle accidents in 2000 (National Highway Traffic Safety Administration, 2010). A recent study found that 10 percent of drivers engaged in distracted driving behaviors while driving, including texting and talking on mobile phones. This study examined the impact of texting and eating on driving performance.

METHOD

Participants were assigned to one of three groups: texting, eating, or control. The texting group was instructed to text messages every 150 seconds while driving a simulated vehicle. The eating group was instructed to eat a standardized meal while driving the same vehicle. The control group was instructed to drive without any additional distractions. In all three groups, participants were asked to complete the same driving tasks, including lane position, speed, and avoidance maneuvers.

RESULTS

The results indicated that texting and eating both impaired driving performance, with texting having a greater impact than eating. The texting group had more lane departures, higher speeds, and a greater number of crashes compared to the control group. The eating group also had more lane departures and higher speeds compared to the control group, but the difference was not as significant as the texting group.

DISCUSSION

The results of this study suggest that both texting and eating impair driving performance, with texting having a greater impact than eating. These findings highlight the importance of drivers being aware of the potential risks associated with these behaviors and taking steps to reduce the risk of accidents on the road.
As you search databases, use a Boolean worksheet to construct your own research question. Download the “Driving and Mobile Phone Boolean Worksheet” from the OT LibGuide at: http://guides.nyu.edu/databasesOT
• **Medline/PubMed**: the premier biomedical database; 1950 to present with some older refs; more than 26 million records

• **Web of Science** (*Social Science Citation Index, Science Citation Index, Arts and Humanities Citation Index*)

• **CINAHLPlus** (*Cumulative Index to Nursing and Allied Health Literature*); indexes nursing and allied health literature for more than 3200 journals back to 1937.

• **PsycINFO**: International coverage of the professional and academic literature in psychology, medicine, psychiatry, nursing, sociology, education, pharmacology, physiology, linguistics, and other areas.

• **Proquest Central** multidisciplinary resource for research on contemporary topics or for the beginning stages of a research project. Includes Newspapers, NYT/WSJ and more.

• **Joanna Briggs Institute EBP Database**: preappraised evidence summaries and systematic reviews, covering a wide range of medical, nursing, and health science specialties

• **COCHRANE Database of Systematic Reviews**: Collaboration’s systematic reviews information, from other systematic reviews, economic evaluations and individual clinical trials. Includes Cochrane Database of Systematic Reviews (CDSR), Database of Abstracts of Reviews of Effects (DARE), Cochrane Central Register of Controlled Trials (CENTRAL), Cochrane Methodology Register (CMR), NHS EED, and Health Technology Assessment Database (HTA).

For many OT questions, search both **CINAHLPlus** and **Medline/Pubmed**.

For questions with behavioral aspects, also search **PsycINFO**, **Web of Science**.
A result from a CINAHL search...

Objective assessment of the effects of texting while driving: a simulator study.

Authors: Bendak, Salaheddine

Affiliation: Department of Industrial Engineering and Engineering Management, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates

Publication Type: journal article

Language: English

Major Subjects: Accidents, Traffic; Text Messaging; Computer Simulation; Automobile Driving – Psychosocial Factors; Attention

Minor Subjects: Logistic Regression; Accidents, Traffic -- Prevention and Control; Probability Sample; Young Adult; Risk; Psychology; Task Performance and Analysis; Analysis of Variance; Studies; Evaluative; Scales; Scales

Abstract: Recent advances have made it increasingly easy to opt to send and receive text messages while driving. The potential to distract drivers from their surroundings has raised concerns about the risk of accidents. This study aims to assess the distraction caused by texting and the distraction caused by not having the potential to receive messages. Twenty participants were recruited for the study and asked to drive in a simulator while receiving text messages or not. The results showed that texting while driving significantly increased the number of accidents and near misses.
Objective assessment of the effects of texting while driving: a simulator study.

2015 Dec 01

ISSN: 1745-7300

Online Access

- Taylor & Francis Social Science & Humanities with Science & Technology
 NYU access only
- Online Version
 NYU access only

Copies in Library

Not Available

Access full text (nyu.edu only)
Objective assessment of the effects of texting while driving: a simulator study

Salaheddine Bendek

Published online in Aug 2014

www.ijics.org

View Citations of this article

Introduction and background

Driving a motor vehicle is a demanding task that requires a driver's full attention. In a busy environment, drivers are faced with many distractions. Such distractions can be classified into two main groups: external and internal. External distractions include any non-driving activity, such as talking on the phone, eating, or listening to music. Internal distractions include any internal activity, such as thinking about a problem or daydreaming. In this study, we investigated the effects of external and internal distractions on driving performance in a simulator study.

Received September 2014

Keywords: distraction, driving, performance

1. Introduction and background

Driving a motor vehicle is a demanding task that requires a driver's full attention. In a busy environment, drivers are faced with many distractions. Such distractions can be classified into two main groups: external and internal. External distractions include any non-driving activity, such as talking on the phone, eating, or listening to music. Internal distractions include any internal activity, such as thinking about a problem or daydreaming. In this study, we investigated the effects of external and internal distractions on driving performance in a simulator study.

Received September 2014

Keywords: distraction, driving, performance

In the past decade, many research studies have been conducted to evaluate the role of mobile phones in driving. However, most of these studies have focused on the effects of mobile phones on driving performance. This study aimed to investigate the effects of both external and internal distractions on driving performance.

Received September 2014

Keywords: distraction, driving, performance

The traditional measure of driving performance is the number of traffic offenses. However, this measure does not provide a comprehensive picture of driving performance. In this study, we used a combination of objective and subjective measures to evaluate driving performance. The objective measures included reaction time, speed, and position in the lane. The subjective measures included self-reported levels of distraction and stress.

Received September 2014

Keywords: distraction, driving, performance

A total of 30 participants were recruited for the study. The participants were divided into three groups: no distraction, external distraction, and internal distraction. Each group performed a series of driving tasks in a simulator, which included a variety of traffic situations. The driving tasks were performed under normal and impaired conditions, which were simulated by reducing the participants' visual and auditory input.

Received September 2014

Keywords: distraction, driving, performance

The results showed that external and internal distractions had significant effects on driving performance. The participants in the external distraction group had slower reaction times, lower speeds, and greater deviation from the lane compared to the no-distraction group. The participants in the internal distraction group had higher self-reported levels of distraction and stress compared to the no-distraction group.

Received September 2014

Keywords: distraction, driving, performance

In conclusion, this study provides evidence that both external and internal distractions have significant effects on driving performance. The results highlight the importance of addressing distractions in driving education and policy-making. It is recommended that future research should focus on developing effective strategies to reduce distractions while driving.

Received September 2014

Keywords: distraction, driving, performance

References

When an article is unavailable electronically or not in the library, order via Interlibrary Loan (there is no cost!)

https://ill.library.nyu.edu/
Q: “I need help citing sources. My professor says to use APA format for a bibliography. (I don’t want to inadvertently plagiarize!)”

http://guides.nyu.edu/ot/citing
Texting and receiving messages while driving has been shown to distract, impair performance, and lead to five times more accidents than driving without texting (Bendak, 2015).

Paraphrased in your own words...but citing the source of the information, an article, in APA style. An example of an “In-text” citation:
Citing an article in APA style,
An example of a citation in your Reference List:

Reference List

“Dim eyes growing bright and alert at the sight of a dog entering the room. Pain momentarily forgotten, replaced by joy in an animal’s presence.” (Howie, 2015)

Reference List
Citation Management Tools (e.g., Refworks, Mendeley, Zotero, or Endnote) help you save your own collection of citations, and work with your word processor to cite as you write a paper!
Citation Management Tools
Sign up here:
http://nyu.libcal.com/
Get library HELP

• via CHAT or email http://library.nyu.edu/ask

• Visit the Bobst Library Reference Desk, first floor

• Appointments
 • Susan susan.jacobs@nyu.edu
 • Brynne bc2348@nyu.edu

Follow us:
Twitter!

@NYUSciHealthLib

And our blog:
Discovering Health Evidence
https://wp.nyu.edu/discoveringevidence/
You are invited:

Annual Graduate Student Welcome Reception
@ Bobst Library

Date: Wednesday, September 13, 2017
Time: 5:30pm - 7:00pm
Location: Bobst, 8th Floor North Reading Room

RSVP: http://nyu.libcal.com/event/3370126