Learn how to enter and organize data, perform calculations with simple functions, and format the appearance of rows, columns, cells, and data. Other lessons cover how to work with multiple worksheets, build charts and PivotTables, sort and filter data, use the printing capabilities of Excel, and more.
This course covers a variety of functions, such as VLOOKUP, MATCH, and INDEX, statistical functions, text functions, and date and time, math, text, and information functions.
Learn to create different kinds of Excel charts, from column, bar, line and pie to more recently introduced types like Treemap, Funnel, and Pareto. Plus, learn how to fine-tune your chart's color and style; add titles, labels, and legends; insert shapes, pictures, and text boxes; and pull data from multiple sources.
Ebook Central is NYU's preferred ebook provider. Users can search, read, highlight, and annotate full-text books in many subject areas, including the social sciences and humanities.
Skillsoft Books (formerly Books24x7) is an online collection of computer technology-related ebooks. It contains hundreds of books and videos from respected IT publishers such as MIT Press, Microsoft Press, Osborne/McGraw-Hill, Que, Sams, Sybex and Wiley. Use it to search for a wide variety of books and videos, ranging from beginners level to advanced (Microsoft Word for beginners or an advanced programming language).
O'Reilly's Safari Books Online provides access to ebooks related to technology, coding, developing, web design, and data visualization.
If database is asking for "Sign In" information for content access, please refresh browser cache and cookies, and try the link again.
Selected books on the topic (available online):
Learn data mining through Excel a step-by-step approach for understanding machine learning methods by Hong. ZhouContents: : Intro -- Table of Contents -- About the Author -- About the Technical Reviewer -- Acknowledgments -- Introduction -- Chapter 1: Excel and Data Mining -- Why Excel? -- Prepare Some Excel Skills -- Formula -- Autofill or Copy -- Absolute Reference -- Paste Special and Paste Values -- IF Function Series -- Review Points -- Chapter 2: Linear Regression -- General Understanding -- Learn Linear Regression Through Excel -- Learn Multiple Linear Regression Through Excel -- Review Points -- Chapter 3: K-Means Clustering -- General Understanding -- Learn K-Means Clustering Through Excel
Contents: : Review Points -- Chapter 4: Linear Discriminant Analysis -- General Understanding -- Solver -- Learn LDA Through Excel -- Review Points -- Chapter 5: Cross-Validation and ROC -- General Understanding of Cross-Validation -- Learn Cross-Validation Through Excel -- General Understanding of ROC Analysis -- Learn ROC Analysis Through Excel -- Review Points -- Chapter 6: Logistic Regression -- General Understanding -- Learn Logistic Regression Through Excel -- Review Points -- Chapter 7: K-Nearest Neighbors -- General Understanding -- Learn K-NN Through Excel -- Experiment 1 -- Experiment 2
Contents: : Experiment 3 -- Experiment 4 -- Review Points -- Chapter 8: Naïve Bayes Classification -- General Understanding -- Learn Naïve Bayes Through Excel -- Exercise 1 -- Exercise 2 -- Review Points -- Chapter 9: Decision Trees -- General Understanding -- Learn Decision Trees Through Excel -- Learn Decision Trees Through Excel -- A Better Approach -- Apply the Model -- Review Points -- Chapter 10: Association Analysis -- General Understanding -- Learn Association Analysis Through Excel -- Review Points -- Chapter 11: Artificial Neural Network -- General Understanding
Contents: : Learn Neural Network Through Excel -- Experiment 1 -- Experiment 2 -- Review Points -- Chapter 12: Text Mining -- General Understanding -- Learn Text Mining Through Excel -- Review Points -- Chapter 13: After Excel -- Index
Summary: : Use popular data mining techniques in Microsoft Excel to better understand machine learning methods. Software tools and programming language packages take data input and deliver data mining results directly, presenting no insight on working mechanics and creating a chasm between input and output. This is where Excel can help. Excel allows you to work with data in a transparent manner. When you open an Excel file, data is visible immediately and you can work with it directly. Intermediate results can be examined while you are conducting your mining task, offering a deeper understanding of how data is manipulated and results are obtained. These are critical aspects of the model construction process that are hidden in software tools and programming language packages. This book teaches you data mining through Excel. You will learn how Excel has an advantage in data mining when the data sets are not too large. It can give you a visual representation of data mining, building confidence in your results. You will go through every step manually, which offers not only an active learning experience, but teaches you how the mining process works and how to find the internal hidden patterns inside the data. What You Will Learn: Comprehend data mining using a visual step-by-step approach Build on a theoretical introduction of a data mining method, followed by an Excel implementation Unveil the mystery behind machine learning algorithms, making a complex topic accessible to everyone Become skilled in creative uses of Excel formulas and functions Obtain hands-on experience with data mining and Excel This book is for anyone who is interested in learning data mining or machine learning, especially data science visual learners and people skilled in Excel, who would like to explore data science topics and/or expand their Excel skills. A basic or beginner level understanding of Excel is
Summary: : recommended. Hong Zhou, PhD is a professor of computer science and mathematics and has been teaching c ourses in computer science, data science, mathematics, and informatics at the University of Saint Joseph for more than 15 years. His research interests include bioinformatics, data mining, software agents, and blockchain. Prior to his current position, he was as a Java developer in Silicon Valley. Dr. Zhou believes that learners can develop a better foundation of data mining models when they visually experience them step-by-step, which is what Excel offers. He has employed Excel in teaching data mining and finds it an effective approach for both data mining learners and educators.
ISBN: 9781484259825
Publication Date: 2020
Using Excel for Business and Financial Modelling by Danielle Stein FairhurstA hands-on guide to using Excel in the business context First published in 2012, Using Excel for Business and Financial Modelling contains step-by-step instructions of how to solve common business problems using financial models, including downloadable Excel templates, a list of shortcuts and tons of practical tips and techniques you can apply straight away. Whilst there are many hundreds of tools, features and functions in Excel, this book focuses on the topics most relevant to finance professionals. It covers these features in detail from a practical perspective, but also puts them in context by applying them to practical examples in the real world. Learn to create financial models to help make business decisions whilst applying modelling best practice methodology, tools and techniques. * Provides the perfect mix of practice and theory * Helps you become a DIY Excel modelling specialist * Includes updates for Excel 2019/365 and Excel for Mac * May be used as an accompaniment to the author's online and face-to-face training courses Many people are often overwhelmed by the hundreds of tools in Excel, and this book gives clarity to the ones you need to know in order to perform your job more efficiently. This book also demystifies the technical, design, logic and financial skills you need for business and financial modelling.